Social Pixels: Genesis and Evaluation

Vivek K. Singh
University of California, Irvine

singhv@uci.edu

ABSTRACT

Huge amounts of social multimedia is being created daily
by a combination of globally distributed disparate sensors,
including human-sensors (e.g. tweets) and video cameras.
Taken together, this represents information about multiple
aspects of the evolving world. Understanding the various
events, patterns and situations emerging in such data has
applications in multiple domains. We develop abstractions
and tools to decipher various spatio-temporal phenomena
which manifest themselves across such social media data.
We describe an approach for aggregating social interest of
users about any particular theme from any particular lo-
cation into ‘social pixels’. Aggregating such pixels spatio-
temporally allows creation of social versions of images and
videos, which then become amenable to various media pro-
cessing techniques (like segmentation, convolution) to de-
rive semantic situation information. We define a declarative
set of operators upon such data to allow for users to for-
mulate queries to visualize, characterize, and analyze such
data. Results of applying these operations over an evolving
corpus of millions of Twitter and Flickr posts, to answer
situation-based queries in multiple application domains are
promising.

Categories and Subject Descriptors

H.4.m [Information Systems|: Miscellaneous

Keywords

Human-sensors, microblogs, social pixel, Situation detec-
tion, query algebra, media processing

1. INTRODUCTION

We are currently witnessing an explosive growth in the so-
cial web, where large amounts of social multimedia is being
created daily by a globally distributed array of disparate sen-
sors, including human-sensors (e.g. tweets) and video cam-
eras. Sites like Twitter, Facebook, and Flickr are reporting
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millions of new user posts each day. However, the current
technology trends have mostly focused on producing large
volumes of such media. The techniques on consuming or uti-
lizing, such social multimedia are still in infancy. We argue
that the piece-meal consumption of any of such tweets, im-
ages, or songs has only limited implications. Rather, the real
rewards lie in utilizing aggregated collections of such media
to understand various real world spatio-temporal phenom-
ena whose aspects are captured within such social media.

While (on the surface) appearing to be individualistic and
unsynchronized, the social web is known to demonstrate crit-
ical self organizing behavior[1]. The patterns emerging often
show deep interconnections with various world events [19,
23] and in effect capture the evolving world model at each
instant. Hence we consider the emerging social web to be
a macroscope wherein millions of human-sensors across the
globe are capturing different aspects of the spatio-temporal
phenomena which can be aggregated into a holistic view.

Spatio-temporal organization and processing of such social
media will have applications in domains ranging from auto-
mated trip planning, and customized recommendations at
individual user level, to emergency response, political cam-
paign management, weather analysis, and geo-spatial busi-
ness intelligence at a global level. This underscores the need
for tools which can effectively organize and process large
volume of such social media data and make explicit the se-
mantic information from them.

We feel that multimedia research tools are especially well
suited for studying such socio-media phenomena. One, they
are well positioned to handle the different forms of media
(audio, video, text, sensors etc.) being created on the social
web. Equally importantly, they have rich array of tools for
handling both spatial (like spatial organization of pixels in
images) and spatio-temporal (videos) organizations of data.

In this paper we present an approach in this direction.
Taking inspiration from traditional image pixels which rep-
resented aggregation of photons at a location, we define ag-
gregation of user interest at a particular geo-location as a
‘social pixel’. Combining such social pixels spatially allows
us to create e-mages (i.e. an event data based analog of
images) and combining them across space and time leads
to temporal e-mage sets. Such a visual representation (e.g.
shown in fig 1), allows for intuitive understanding by any
human user. Further an image/video based representation,
allows for the use rich repository of media processing al-
gorithms (like flow patterns, segmentation, convolution) to
easily derive semantically useful situation information. Such
analysis would be very tedious in a text-based corpus of sim-



ilar data or even as querying based approach in traditional
databases where (relatively simple) media processing opera-
tors like convolution and segmentation are yet to be mapped
effectively.

We realize that the real end users of such systems (e.g.
a political campaign manager, or emergency response ana-
lyst) are unlikely to be experts in the procedural aspects of
data processing. In fact, procedural methods/ languages are
known to require significant training before users can em-
ploy them, and often tend to be tool and format dependent
[25] [11]. Hence, we define a set of declarative query oper-
ators, where the user just describes her data needs. The
defined spatio-temporal query operators allow users from
multiple domains to interact with the social media data and
ask questions on derived attributes (e.g. velocity, epicenter
of the distribution) which would not be available directly
out of raw data feeds.

To summarize, our main contributions in this work are:
1. Defining an social pizel based approach for a unified
spatio-temporal representation of social multimedia data.
2. Developing a media-processing inspired approach for de-
riving relevant situational attributes from such data.

3. Defining a declarative query algebra for an end user to
query such a system.

While the ideas are generic and can be applied to any so-
cial media, in this paper we focus on ‘Twitter’ and ‘Flickr’
for their easy availability, real-time (especially Twitter) data

characteristic, large user volume, and inherent spatio-temporal-

thematic nature. To verify the efficacy of the proposed
approach, we demonstrate multiple applications including
business intelligence, political event analytics, and seasonal
characteristics analysis on this data set.
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Figure 1: Example of a ‘social image’. This image
show interest level amongst users across mainland
US in terms of number of tweets containing the term
‘iphone’ on 11th Jun 09.

2. DESIGN PRINCIPLES

2.1 Humans as sensors

Humans as sensors can describe aspects of a situation,
which are not yet measurable by any hardware sensors. Hu-
mans can describe perceptions, emotions, impressions (for
business products), counter state censors (as seen in Iran
elections), be first respondents (e.g. Hudson river land-
ing), emergency reporters (Haiti earthquake rescues), and
even pass unconfirmed/unofficial information reports (ru-
mors, merger-info, scandals). Growing importance of multi-
modal user contributions (e.g. twitpic, twaudio, Flickr),
and location based services (e.g. Foursquare, Gowalla, Yelp)
clearly highlights this. Social media networks arguably thus
represent a large self organizing sensor network, more sophis-

ticated than any other sensor network currently deployed.
Hence, we intend to exploit human sensor inputs for situa-
tion awareness and control in this work.

2.2 Social pixel approach

Traditional imaging sensors employed pizels which repre-
sented aggregations of the various photon energies striking
at any particular location. In situation sensing, we define so-
cial pizels to be representative aggregations of different user
contributions coming a particular geo-location. For exam-
ple, a large number of tweets about ‘swine flu’ coming from a
particular geo-location, can be represented as a ‘high’ value
at the corresponding pixel.

The abstraction of social media content into spatio-temporal
‘pixels’; ‘images’, and ‘videos’ has implications on multiple
aspects of this work.

1. Visualization: This approach allows for intuitive vi-
sualization and hence aids situation awareness for a human
user. Humans are quite used to seeing satellite image and
GIS data on similar interfaces and hence can understand
such data much better than any text or data-base centric
representation. A large portion of human brain is dedicated
to visual processing, which explains the popularity of dash-
board based situation awareness tools[4].

2. Intuitive Query and mental model: The correspon-
dence of the human mental model of spatio-temporal data
with the query processing model, makes it easier for humans
to pose queries, and understand the results.

3. Common representation: Such a representation al-

lows multiple spatio-temporal data sources (e.g. Maps, weather

info, demographics, geocoded twitter feeds, Flickr images)
to be assimilated within the same framework.

4. Data Analysis: Such a representation allows us to ex-
ploit a rich repository of media processing algorithms which
can be used to obtain relevant situational information from
this data. For example, well developed processing techniques
(e.g. filtering, convolution, background subtraction) exist
for for obtaining relevant data characteristics in real time.

Besides these, a spatio-temporal binning is better for indi-
vidual user privacy, and reduces run-time query processing
cost.

2.3 Combining media processing with declar-
ative query algebra

Spatio-temporal databases have their strength in being
relatively easier for users to pose queries. Media processing
tools, on the other hand can undertake much more sophis-
ticated processing. Hence, in this work we want to combine
the strengths of the two approaches.

3. RELATED WORK

Multiple works at the intersection of multimedia, signal
processing, HCI, and Web 2.0 are becoming increasingly in-
terested in the potential here. For example multiple ideas
like ‘citizen/ participatory sensing’[22], ‘social signal pro-
cessing’, ‘human computation’, ‘crowd-sourcing’, ‘collective
intelligence’, ‘wisdom of the masses’[9], etc. have become
increasingly popular recently. We contribute to such efforts
by providing useful media processing based analytic tools.

There have been some attempts recently at combining so-
cial media content across users for meaningful applications.
GIS based works like [8] (using a global network of web-



cams to detect weather patterns), Photo-synth based com-
bination of Flickr images[24], Twitter based combination of
microblogs for analyzing presidential debate[21], Swine-flu
monitoring [23], and earthquake monitoring [19] are excel-
lent examples of these. There has also been significant work
recently on analyzing social networks and the blogosphere.
Twitris[13] allows users to observe trending (popular) topics
on Twitter, and collect the related information across me-
dia sources. Blogscope [3] allows users to identify popular
topics in blogs based on space and time. Works like [12] and
[20] discover important topics in microblogs over space and
time using a probabilistic approach. None of these works
;however, provides a generic algebra to undertake spatio-
temporal analytics across different applications.

Google Insights (and similar Yahoo search engine log, based
works|[2]) allow users to identify important trends in search
patterns. However, while the search keywords capture the
information seeking behavior of the users, social media cap-

tures the information providing behavior of the human-sensors.

The social media content captures partial user accounts,
multiple perspectives and emotional state of the human users
which can not be captured by a search log.

Social network based query languages (e.g. [18]), pro-
vide rich operators for analyzing the community-based (e.g.
friends, groups, friend-of-a-friend) aspects of the social me-
dia data. However these tools are weak on the spatial and
temporal analysis operations, which are our current focus.
Spatial OLAP incorporates GIS into analytical processing of
data warehouses[17], and works like [14, 15], focus on storage
of moving objects and approximate answering of aggregation
queries. Spatio-temporal querying over sensor networks also
try to answer such questions in an energy efficient manner
[5]. However, none of these works employs an image-like
data representation or exploits the related benefits. Liver-
man et al. [10], allude to the concept of creating ‘pixels’
out of social science (land use pattern) data, however they
come from a very different background and did not explore
the use of image and video processing techniques once the
representation is made. Thus, they (and the other works
above) do not support spatial operations like convolution
which come naturally for such a representation, nor do they
allow an intuitive match between the user mental model and
query operation model.

Hence, we notice significant research interest in related
areas. However, to the best of our knowledge however, ours
is the first attempt at creating a unified image-processing
inspired architecture for undertaking spatio-temporal anal-
ysis. Our image-based representation provides a common
framework for spatio-temporal data aggregation, media pro-
cessing, data visualization, and an intuitive correspondence
between query model and user’s mental model. The generic
query operators defined on top of this model allow our frame-
work to be applicable across multiple spatio-temporal appli-
cation domains.

Current version of this paper builds upon earlier versions
which provided a proof-of-concept technical demonstration
and an interactive poster presentation '. The current ver-
sion provides all the relevant details, reports experimenta-
tion across multiple applications, and describes the progress
in our thinking, especially underscored by a set of generic
query operators which were missing in previous versions.
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4. PROPOSED APPROACH

—{—> Visualization

| Spatio- Media

Micro temporal
event .|| aggregation Engine
detection [ | Query

| Space \ engine || . Anadlysis &
>RSI

Time

Figure 2: Overall architecture

4.1 System architecture

The overall system architecture is shown in figure 2. The
system processes raw data coming from different media sources
to obtain micro-level event data. It aggregates the data
about any particular theme coming from a particular loca-
tion into a spatio-temporal pixel (i.e. stel). We combine
multiple such spatio-temporal blocks into e-mage or tempo-
ral e-mage set representations. Next, we undertake multiple
media processing inspired operations on this data to detect
important parameters, patterns and macro events as may
be relevant to the application domain. These properties can
then directly be visualized by the system designer to gain
a global level awareness of the situation evolving, or can be
used as a live data-source for users to formulate their spatio-
temporal queries, a combination of which can be used for
intelligent decision making.

Micro-event detection

Multiple (individual) users generate social media without
explicitly coordinating with others. Our system processes
such raw data to detect micro-level events which would be
useful for upper level analysis. The system employs a sim-
ple bag-of-words (similar to [7]) approach to detect various
micro-events from the generated media. Hence, a micro-
event is detected each time a tweet containing the relevant
term is posted. Similarly a micro-event is detected each
time a Flickr image with matching color patterns, concepts
or tags is posted.

Spatio-temporal aggregation using social pixels

The system aggregates micro-events originating from a spatio-
temporal bin into a representative social pixel value. Clearly,
higher level abstractions have a trade-off with lower level de-
tails. Hence, while the social pixel value assigned depends
on the application, the underlying idea is to abstract away
the details and maintain a representative value which would
be useful for higher level processing. In the social interest
modeling applications, we consider the count of micro-events
related to the theme, to be this representative value. For
environmental monitoring using Flickr, we use the greenery
level of the images from that area to be this representa-
tion. Other plausible values include number of images with
matching ‘tags’ or ‘concepts’, mean energy of audio-posts,
average monthly income, demographic count, temperature
info, distance to amenities, accident count etc.

Media processing engine

The 2-D grid like representation of social pixels to create e-
mages, opens doors to multiple image processing operations.



The system performs multiple image and video processing
operations in the background, to support the various query
operators made available to the user.

Query engine

The system currently supports 6 sets of operations viz. Se-
lection, Arithmetic and Logical, Aggregation, Grouping, Char-
acterization, and Pattern matching, for analyzing any spatio-
temporal data. The Selection operator allows the users to
specify the spatio-temporal bounding box in which to per-
form the other operations. The Arithmetic and Logical op-
erators allow the users to combine and compare multiple
e-mages using operations like add, and, multiply, and convo-
lution. The Aggregation operator allows temporally related
e-mages to be aggregated. The Grouping operator allows the
composed e-mage about any topic to be split into multiple
e-mages on for each ‘blob’/‘zone’ /‘segment’ of the e-mage.
The characterization operators represent different attributes
(e.g. epicenter, density, shape) for each of the segments.
Computing the attributes separately for each segment helps
to better characterize many attributes like epicenter, shape
etc., which may lose their meaning if computed across mul-
tiple ‘segments’/ ‘clusters’ as if they were one. The pattern
matching can be undertaken to see how closely does the
represented phenomena match any of the patterns from a
library (e.g. monotonically increasing in time, explosion in
interest, radial spatial growth) or related historical data.

S. DATA MODEL

In this section we present our data model which supports
various query operators for the spatio-temporal data. The
defined data model builds upon image algebra literature [16,
6]. While describing it as a ‘social pixel’ in social media set-
ting, we generically define the fundamental building block
for all the spatio-temporal-thematic data as a stel (spatio-
temporal element). The stels are combined to create an
e-mage, which is conceptually similar to a multi-spectral 1m-
age, whose each band corresponds to one theme present in
the data.

5.1 Stels

We consider a stel (spatio-temporal element), as the fun-
damental building block for spatio-temporal data. Each stel
has its coordinates in space and time, a theme, a value, and
a pointer to raw data from which the value is derived.

stel = [steoord, theme(s), value(s), pointer(s)] (1)
where:
Steoord = [lat, lon, alt, timeStamp] (2)
5.1.1  steoora

lat, lon, alt:
Represent the geographical latitude, longitude, and altitude
of the location, corresponding to the data.
lat € [—90,90], lon € [—180, 180], alt € [0, c0]

timeStamp:
Represents the timestamp corresponding to the data. We
represent timestamps in POSIX / UNIX format.
timestamp € [0, 00]

5.1.2 Theme

Represents the ‘theme’ e.g. ‘Swine Flu, i-Phone, Obama,
Iran-election’, to which the data corresponds. This theme
can be set by the application designer or defined automati-
cally during the micro-event detection and stel composition.

5.1.3 Value Set

A value set V' is an instance of a homogeneous algebra,
which is a set of values and operations that manipulates
these values. Here, the set of values is N, and the opera-
tions include addition, subtraction, multiplication, division,
maximum, minimum, etc.

Each stel consists of one or more [theme, value] pairs, one
for each ‘band’ or topic being represented.

5.1.4 Data Pointer

This is a vector of pointers to the actual data. While we
intentionally want to abstract the raw data into the above
‘value’, for computational and reasoning efficiency, certain
application designers may want to keep pointer(s) to the
actual data to support detailed analysis when required. This
obviously has trade-offs with privacy of individual user, and
may not be supported in all applications.

For the rest of our discussion here, we will focus on 2-
D (latitude and longitude) spatial information, theme and
numerical values for each stel and ignore the altitude com-
ponent, as well as the data pointers. Also, it is often de-
sirable to consider spatial dimension only. So we call each
[lat,lon, theme(s), value(s)] a ‘pixel’ in our discussion here.

We explicitly define three aggregates of stels which will be
commonly used when dealing with collections of such data
onto the 2-D spatial axes (e-mage) and spatio-temporal axes
(Temporal E-mage Set and Temporal Pizel Set).

5.2 E-mage

Let V be a value set, X a two dimensional point set
(lat,lon), and © a set of theme. An © X V-valued multi-
thematic e-mage on X is any element of (6 x V)X, which
is a map from X to © x V. Here we use grid as the data
structure representation of the e-mage. An e-mage is rep-
resented as g = (x, {(tm,v(x))}}x € X = R?, tm € © and
v(x) € V =N). We use |g| to indicate the size of an e-mage,
which is (width, length).

5.3 Temporal E-mage Set

A temporal e-mage set, by extension is a finite set TES =
{(t1,91); -, (tn, gn)}, where ¢; is the timestamp of e-mage g;.

5.4 Temporal Pixel Set

A temporal pixel set is TPS = {(t1,p1), -, (tn, pn)}, where
p; is a pixel.

6. QUERY OPERATIONS

The aim of designing this operation algebra is to retrieve
relevant spatio-temporal-thematical data (e-mages, TES, or
their attributes) by describing their characteristics, rather
than manipulating them directly. Just like ‘Selection’, ‘Pro-
jection’; ‘Join’ in relational algebra, these operators are aimed
to be the basic operations, combination of which can be used
for arbitrarily sophisticated querying on spatio-temporal data.

6.1 Selection Operation o

This operator acts as a filter to choose only the subset of
data which is relevant to the user application.



6.1.1 Predicate on e-mage

Predicate on e-mage ¢ is a boolean function on pixels
P(p),p € g. Predicates can be applied on spatial point,
theme or value of pixel p.

A spatial predicate Pgr is a point lattice R C X. If the
spatial coordinate of the pixel p is in R, P(p) is evaluated
to be true; otherwise, false. A theme predicate selects the
[theme, value] pair of the given theme Pipeme in p. And a
value predicate P, is a value comparison on pixel value p.v.
If the value satisfies the comparison, P(p) is true; otherwise,
false.

The formal definition is

op(TES) = {(t1,0(q1)), .-, (tn,(gn))} (3)
where

op(gi) = {(x{(tm, y) D}y = v(z) if P(x, (tm,v)) is true; O,iJ(”i‘)alse}

6.1.2 Predicate on Time

Predicate can also be applied on time of TES, which is a
comparison on time point or interval. The definition is

op(TES) ={(t1/,917), -, (tm’, Gm')} where P(t;/) is true.

(5)

Example:

1) Show the last hour’s data from TES for theme ‘iPhone’,
from California, whose value is greater than 50.
OTheme=iphoneAR=CalAAt<1hrAv>50 (TES)

Note that given a multi-spectral e-mage, we can always
produce a set of single-spectral e-mages by selecting the in-
dividual themes. For the ease of exposition, in the following
dicussion, we assume that every e-mage in TES and every
pixel in T PS is single-spectral.

6.2 Arithmetic and Logical Operation ¢

Arithmetic and logical operations take two e-mage g1 and
g2 as input, and generate a new e-mage gs as output. We
assume that sizes of the e-mages are the same, i.e. |g1] =
oo = |Gnl.

®(g1,92) = g3(x, {{tm, B(v1(x), v2(x)))}) (6)

where v; and ve are the values in g1 and g2, and & €
{+,—, %, /, maz, min, avg, convolution,
and, or}.

Definition of these operations can be extended to handle
multiple TES, where e-mages at the corresponding times-
tamps in different TES are processed as follows.

®(TES1,....,TESn) = (t1,®(g11, -, 9n1)); s (tm, B(g1m ), - gnm))

(7)
where g;; is the e-mage at timestamp j in TE'S;. While most
of the operations {+, x, maz, min, avg} can handle multiple
inputs, some (—, convolution) can handle only two inputs at
a time.

6.3 Aggregation Operation o

Aggregation operation ag aggregates e-mages in TES
based on function @, where ® € {+, *, avg, max, min}, and
generates one result e-mage. Here, we assume that all e-
mages ¢gi, ..., gn_have the same size.

ag(TES) = ®(g1; -, gn) (8)

Example:
1) Show the average e-mage from last one hour’s e-mages of
California in TES.
Oavg(OR=Cainat<1nr(TES))

6.4 Grouping Operation ~

The grouping operation groups pixels of a given e-mage
g in TES based on certain function f, and slices g into a
set of e-mages accordingly. The function f is a general term
that expresses the function used to group the pixels.

Y (TES) = v¢(t1,91) U ... U~¢(tn, gn) 9)

where

vty 9i) = {gi1, -, Gin} (10)

where each ¢;; is a sub-e-mage of g; after applying f. For
different function f, the set of result e-mages is different.
We currently support f € {segmentation, clustering, blob—
detection}, for the current implementation, but generically
any method can be applied to do this.

Example:
1) Segment every e-mage in the last one hour’s TES for
California by using segmentation.
'Ysegmentation,n:f’)(O'R:C'al/\Atglhr(TES))

6.5 Characterization Operations: Spatial ¢

E-mage characterization operation takes every e-mage g
in TES, and computes a representative pixel to characterize
this e-mage based on a function f.

¢r(TES) ={(t1, ¢5(91)); -, (tn, ¢5(gn))}  (11)

where ¢f(g;) is a pixel p; computed from f(g;). The result
of this operation is a temporal pixel set T PS.

The function f can be selected from {count, maz, min, sum,
avg, epicenter, density, shape, growth—rate, periodicity}. For
functions max, min, epicenter, the pixel is the one where
the property of value is reached. For instance, after using
mazx, the pixel whose value is the largest among all others in
g is returned. However, for other functions as count, sum,
avg, density, shape, growth — rate, periodicity, the compu-
tation produces only a value v without any specific location
point. In these cases, the point of the result pixel is set as
(0,0), and v is set as the pixel value.

Example:

1) Find the max point of each e-mage in last one hour’s e-
mages of California in TES.
Omaz(OrR=cairnat<inr(TES))

6.6 Characterization Operation: Temporal

Temporal characterization operation is designed to char-
acterize temporal pixel set TPS. Note that TPS is the
result of spatial characterization on e-mages in TES. So
temporal characterizations aid users to study how the spa-
tial characterizations vary over time. A prediction operation
that calculates the value at next timestamp tx+1 based on
pixels before ;41 is also supported, and is treated as a spe-
cial type of characterization.

Tr(TPS) = {(tw, f((t1,p1), s (tr, i) |k € [2,n]} - (12)

where f € {displacement, distance, velocity, speed, acceleration,
linear extrapolation, exponential growth, exponential decay, etc.}.

Functions like linear extrapolation are used for prediction
based on multiplying with appropriate kernels.

Example:
1) Find the velocity of epicenter in last one hour’s e-mages
of California from TES.

Tvelocity (Qbepicenter (UR:CalAAtS 1hr (TES)))



S.No | Operation Input Output

1 Selection o TES TES
2 Arithmetic @ K - TES TES
3 Aggregation « TES TES
4 Grouping y TES TES
5 Characterization:

- Spatial ¢ TES TPS

- Temporal 7 TPS TPS
6 Pattern Matching:

- Spatial ¥ TES TPS

- Temporal TPS TPS

Table 1: Summary of various query operations.

TES=Temporal E-mage Set, TPS=Temporal Pixel
Set

6.7 Pattern Matching Operation

Pattern matching operations compare the similarity be-
tween a TES/TPS and a pattern, which can be defined from
historical data or chosen from a library of relevant patterns.

6.7.1 Spatial Pattern Matching

Spatial pattern matching compares every e-mage g¢; in
TES with a pattern e-mage P, and defines a temporal pixel
set where each pixel value represents the observed similarity.

Yp(TES) = {(t1,p1), s (tn, pn)} (13)

6.7.2 Temporal Pattern Matching

Similarly, we can compare the values of each pixel in TPS
to certain temporal pattern P. The patterns can be mono-
tonically increasing, decreasing, sine, cosine, etc.

¢p(TPS) = (tn; pn) (14)

where value of p,, is the similarity value.

Example:
1) Compare the similarity between last one hour’s e-mages
of California from TFES with radial decay.
wscaled(UR:Cal/\AtS 1hr(TES)7 Kradial,decay)

A summary of all the operators defined and the corre-
sponding input and output is shown in table 1.

7. MEDIA PROCESSING FOR SUPPORTING

QUERY OPERATORS

‘We have implemented the query operators using an under-
lying media processing engine. Each of the query operator
corresponds to one or more classes of media processing op-
erations. This mapping is shown in figure 3.

As can be seen, multiple query operations (e.g. ‘Charac-
terization’, and ‘Pattern matching’) may employ the same
media processing operation (e.g. ‘Convolution’) in terms of
the underlying implementation.For example both ‘Circular-
ity’ (which is a ‘characteristic’ from a user perspective), and
Pattern matching with a library of Kernels, use convolu-
tion operation. However they are different operators from a
declarative user perspective.

8. IMPLEMENTATION AND RESULTS

8.1 System implementation

S.No | Query Language Operator Media processing | Media processing Operator Details
Operator Category

1. Selection
-Spatial Arithmetic AND with the spatial mask
-Temporal Arithmetic AND with the temporal mark
-Thematic Arithmetic =
-Value Arithmetic AND, >, <, =

2, Arithmetic and Logical
-Max, Min, +,-,%,* Arithmetic Max, Min, +,-,%,*
-NOT, OR, AND, Logical NOT, OR, AND

Convolution Convolution

Arithmetic/Logical | Max, Min, +,-,%,*, NOT, OR, AND

-Convolution

3. Aggregation

3. Grouping

- Predefined segments count | Segmentation K-means

- Segment count not
predefined

Segmentation Affinity propagation

4. Characterization
uSpatial

- Count, Min, Max, Sum, Statistical
Average, Variation

Count, Min, Max, Sum, Average

- Coverage Arithmetic Count

- Epicenter Arithmetic Weighted average

- Circularity Convolution Scale free convolution with known
circular kernel

- Growth rate Arithmetic +-%

:: Temporal

- Displacement, Distance, Arithmetic +- %, *

Velocity, Acceleration,
Growth rate

- Future estimation Arithmetic Multiplication with Kernels based on
users choice e.g. linear, progression
exponential growth

- Periodicity Convolution Auto correlationi.e. Self convolution
with time-lagged variant.

5. Pattern Matching

- Scaled Matching Convolution Convolution, Auto-correlation using
user defined or pre-defined Kernels

- Scale free Matching Convolution, Maxima from loops of Convolution/

Statistical Auto-correlationwith different sizes

Figure 3: Implementation details: Mapping of each
Query operator to its media processing operation

The presented analytic system has been implemented in
Java. The queries defined in the query algebra are currently
called as functions in Java program. For example the query
‘When and where was the interest peak in our product?’
corresponding to
Tmaz (Omaz (Tropic=pP (T'ES))) is called as

opCharac(temporal, maz, opCharac(spatial, max, opSelection(topic, P)));

The data processed can be exported into KML files for
rendering in Google Earth. A web based system-interface
has also been created and a (partial) demo and datasets are
available at 2. The social media data employed is obtained
from Twitter and Flickr using their respective APIs.

Twitter data was obtained using 2 sources. We use the
twitter streaming API to download a portion of all pub-
lic Twitter feeds. While some Twitter posts are directly
GPS geo-coded, we geocoded the rest by using the ‘home’
location (e.g. San Fransisco, CA) of the user by using an
opensource geocoding service (http : //ws.geonames.org).
Only the tweets successfully geocoded were used for our ex-
periments here. We augmented this data set using location
based queries for each location across US for selected topics.
The results presented here are based on a data corpus of
more than 100 million tweets using ‘Spritzer’ stream (since
Jun 2009), and the higher rate ‘Gardenhose’ stream since
Nov, 2009. The data set currently gets augmented by about
1 million tweets from the live stream each day.

2http : //socialemage.appspot.com/acmmm,/



Observed
Temporal Physical Observed
S.NoCategory Event Physical Date Peak Location Spatial Peak

Health Care Bill 38.89,-77.03

1 Politics  passed 2010-03-21 2010-03-21 {Washington) 41,-74
California Prop 8, 37.77,-122.41

2 Politics  Trial Day 1 2010-01-11 2010-01-11 (SanFrancisco) 38,-122
31.13,-97.78

3 Society Fort Hood Shootings ~ 2009-11-05 2009-11-05 (FortHood, TX)  33,-97
SeaWorld Whale 28.54,-81.38

4 Society Accident 2010-02-12 2010-02-12 {Orlando, FL) 29,-81
Winter Olympics 49.24,-123.11

5 Sports  Opening ceremony 2010-02-12 2010-02-12  (Vancouver) 44,-79
Baseball World Series 40.71,-74.00

6 Sports  final 2009-11-04 2009-11-04  (New York) 41,-74
Entertainm 34.05,-118.24

7 ent Oscars 2010-03-07 2010-03-07 ({Los Angeles) 34,-118
Entertainm South by Southwest 2010-03-12to 30.26,-97.74

8 ent festival 2010-03-21 2010-03-15  (Austin, TX) 30,-98
2010-01-05to 36.17,-115.13

9 Tech. Conv. CES 2010 2010-01-07 2010-01-06 {Las Vegas) 34,-118
2010-02-10to 33.76,-118.19

10 Tech. Conv. TED 2010 2010-02-13 2010-01-10 (Long Beach,CA) 34,-118

Figure 4: Correlation between Real world events
and twitter data

The combined collection allows users to pose queries both
on the current, as well as archived data. While our approach
is generic, here we illustrate the results using US, as the
selected spatial region.

8.2 Correlation with real world events

To verify whether social media sources do indeed capture
aspects of real world events we ran the following experiment.
We selected a list of 10 important events which happened in
USA (or Canada) during the period of Nov 2009-Mar 2010.
We tried to be diverse in both the category of events as
well as the physical location. We ran the peak (in time) and
max (in spatial location) operators on the Twitter corpus for
these themes. To counter the effect of high Twitter user base
in different parts of the country we performed ‘background
subtraction’ (with an e-mage composed by averaging the
number of posts, on the first day of each month, for all
topics, for each location).

As shown in figure 4, we found that the temporal peak
coincided with the actual event occurrence period for all 10
events. The spatial peak matched accurately for 7, and was
a nearby big city for 2 more, out of 10 events. Only for the
Winter Olympics event, the peak (Toronto) was not within
reasonable distance of the original location (Vancouver).

While a more detailed analysis is required to understand
such phenomena, we found the results to highlight reason-
able correlation between real world events and their mani-
festation on social media data.

8.3 Application: Business analysis

While the spatio-temporal event detection experiment in
sec 8.2 only dealt with single events (with single spatial
and temporal peaks), we need more sophisticated tools to
analyze spatio-temporal situations which may have multi-
ple peaks, locations, and may travel across space and time.
Here, we demonstrate visualization and sample queries which
might be asked by a business analyst, when dealing with
spatio-temporal data about their product of interest (P) in
TES (e.g. ‘iPhone’).

8.3.1 Visualization for situation awareness

To support easy situation awareness we visualized the

data about newly launched iPhone ®, in Google Earth (see
figure 5). We analyzed the tweets and added representative
icons to represent information about areas from where the
users felt that the ‘iPhone’ was ‘too expensive’, ‘reasonably
priced’, showed an interest in ‘other service providers’, or
‘Unlocking of iPhone’, and were ‘happy’ or ‘unhappy’ with
the services of AT&T. Each of these layers of information
could be switched on and off. Note that while the added
icons do not add any new information from an information
theoretic perspective, they can significantly improve the sit-
uation awareness for any human user.

434487
m1122

183

EEEE L LAl el Al e

Figure 5: Visualization in Google Earth of different
aspects of the tweets about ‘iPhone’

8.3.2 Query engine for analysis and insights

Next, we consider some sample queries.

1. When did the interest peak in our product?
Tmaz (¢sum (JR:USA/\theme:P(TES)))

2. Show me three different zones for interest patterns
about our product.
Ysegmentation,n=3 (UR:USAAtheme:P(TES))

3. Where are the epicenters for each ‘zone’ of product
interest?
(bepicenter(’Yn:S(UR:USAAtheme:P(TES)))

4. What is the overall number of users happy with our
product?
Gsum (s (BAND(0R=USANtheme=PraT=7(TES),
UR:USAAtheme:‘happy’/\AT:?(TES))))

5. Assuming linear extrapolation, show me the total an-
ticipated interest tomorrow (Junl6 for this example)?

Tlinear—exztrapolation (()bsu'm (JR:USA/\thcme:P/\AT:'Y(TES)))

6. Show me the best location to open a new store for
product P, given existing store locations e-mage S,
and ‘catchment’ area kernel for each store C.

Pmaz (B Convolution (D - (4t (0rR=Us ANtheme=P (T ES)),
@Convolution (UR:USA(S)7 C))7 C))

The data considered for answering these queries was from
Jun 2 to Jun 15, 2009, which included the date of iPhone
3G version’s release (Jun 8). The results of applying queries
1 through 3 have been shown in Fig. 6. As can be no-
ticed (amongst other things), the peak of interest does in-
deed match with the actual release date. The different zones

3data from Jun 2009
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Figure 6: Results of applying the queries 1-3 on
Twitter data for ‘iPhone’ theme

(query 2), and epicenters found (query 3) also make reason-
able sense. The overall number of ‘happy’ users* was found
to be 1297 (query 4), and anticipated interest (query 5) was
found to be 29120.

For easier understanding we visually illustrate (see fig. 7)
query 6 above and show a sample result. The query aims to
find the best location to start a new store for ‘iPhone’. In
this example, e-mages corresponding to the term ‘iPhone’
were aggregated for 14 days. On the other hand, the AT&T
retail store® locations e-mage was convolved with the catch-
ment area (assumed to be a Gaussian Kernel C) for each
store. The difference between the obtained ‘aggregate in-
terest’ and ‘net catchment area’ images was taken to be a
representative of the ‘under-served interest areas’ where it
makes sense to open a new retail store. To find out the best
location for such a store, we undertook a convolution oper-
ation between the catchment area of a new store and this
‘under-served interest areas’ image. The maxima operation
on the obtained image gave the most appropriate location.
Note that the obtained answer in this case is not merely a
pixel location but a physical geo-location with real life se-
mantics. We obtained the details of the physical location

via reverse-geocoding.
AT&T retail
locations

CONVOLUTION

n Store catchment
area

iPhonetheme
based e-mages,
Jun2toJun 15

Aggregate |
interest

AT&T net
catchment
area

north of Bay Area, CA

i ot
Under-served = . q,;.'f MAXIMA Dedision
N Ye pe | Best s at
interestareas @, & e n G 2
Wi .

Figure 7: Combination of operators for undertaking
business decision

8.4 Application: Political event analytics

8.4.1 Query engine for analysis and insights

We demonstrate sample queries which might be asked by
a political analyst, or campaign manager, when dealing with
spatio-temporal data about a personality of interest (P) (e.g.
‘Obama’) or issue of interest (I) (e.g. ‘Healthcare’).

4detected by simply looking up for :)’ in text for now.
SAT&T is the only legal service provider for iPhones in
US. For the purpose of our discussion, we will assume that
iPhones can only be sold from these retail locations.

1. When did the interest peak about personality P?
Tmaz (@sum (TR=US ANtheme=PAAT=120days (T ES)))

2. What is the periodicity of the interest in this person-
ality?
Tpem’odicity(¢sum(UR:USA/\theme:P/\AT:lQOdays (TES)))

3. Show me the trajectory for interest in personality P
over last 7 days?
¢Epicenter (UR:USA/\theme:P/\AT:7days (TES))

4. Show me the aggregate interest in P over last 7 days,
in Republican states ?
@anD(at (0rR=USANtheme=PAAT=Tdays (T ES)),
OR=US AAtheme=RepublicanA\AT=Tdays (1 ES))

5. Show me the interest in issue I, when interest in per-
sonality P gained its peak?
Utheme:]/\R:USA/\time:tp(TES)

where tp = Tmazx (()bsum (GR=USAAthEme:PAAT=120days (TES)))

6. What is the similarity between the interest patterns
for I and P on the above date?
wspatial—scaled—match(Utheme:I/\R:USA/\time:tp(TES)7
Utheme:P/\R:USA/\time:tp(TES))

where tp = Tmasx (Qbsum (URzUSAAthemezPAAT:lQOdayS (TES)))

Figure 8: Results for queries 3-5 for politician
P=‘Obama’ and issue I=‘Healthcare’

The results presented here are based on data collected for
Personality ‘Obama’ and issue ‘Healthcare’ between Nov 5th
2009, and Mar 30, 2010. The peak of interest in ‘Obama’
(Query 1) was found on 27th Jan, 2010, which corresponds
with the ‘State of the Union’ address. Obviously multiple
events of interests (and local maximas) about ‘Obama’ oc-
curred during the 4 months. The periodicity value (query
2) was found to be approx. 20 days. The trajectory (query
3) of interest epicenter for 7 days (Jan 21-Jan 28) is shown
in Fig. 8. Query 4, i.e. the interest in Republican states
(based on current governorship in the state), and the e-mage
for ‘Healthcare’ on the peak day (query 5) are also shown
in Fig. 8. Lastly, the similarity value (query 6) between
interest in ‘Obama’ and ‘Healthcare’ for that day was found
to be 0.693.

8.5 Application: Seasonal characteristics anal-
ysis

Our experiments so far have focused on using number of
twitter posts from a particular location as the social pixel
or stel value. However our approach is generic. In this sec-
tion we consider average green color intensity ¢ of all Flickr
images uploaded from a location to be the representative
stel value for that location. The experiment is aimed at an-
alyzing climatic/ seasonal phenomena as they occur across
different parts of US. Specifically we want to see which parts

Sbased on normalized data using value = G — average(R +
G+ B)



Figure 9: Spatio-(temporal) emage representing av-
erage of Flickr images posted from each location for
the month of Aug 2009.

of US are more green than others, and what are the seasonal
patterns or trajectory of such phenomena. We envision such
an approach getting extended to detecting when certain phe-
nomena occur (e.g. Fall colors appear in New York), or even
understanding flora growth, or bird migration patterns, by
using more sophisticated concept detectors for images in fu-
ture. Here, we show sample queries for greenery based on
color intensity, and ‘snow’ based on number of images with
matching meta-data (i.e. tags).

1. Show me the variation in green color intensity as it
varies over the whole year.
¢sum(0'theme:green/\At:ly'r(TES))

2. Where is the peak in the greenery across whole of US?
¢maz (OL+ (Jtheme:green/\At:Iyr(TES)))

3. Show me three segments based on greenery, as they
vary over the year.
'Ysegmentation,n:S(Utheme:green/\At:Iyr(TES))

4. Show me difference between red and green colors, for
the New England region as it varies over the year.
D (Psum (Ttheme=redn R=[(40,—76),(44,—~71)]rAt=1yr (T ES)),
Qbsum(Utheme:greenAR:[(40,—76),(44,—71)]/\At:1yr(TES)))

5. Show me the trajectory of the epicenter of high-snow
activity region throughout the year.
d)epicenter (Uvalzl (’Yn:3 (Utheme:snow/\Atzlyr (TES))))

6. What is the degree of similarity between aggregated
snow activity and the North to South linear decay pattern?

wscale—free (C¥+ (Utheme:snow/\Atzly'r (TES))7 Kno’rth—south—decay)

The results here are based on TES created from Flickr
data from US, at 1 month granularity for the year 2009.
Image processing (i.e. averaging of pixel intensities) was re-
stricted to first 100 samples from each location. Hence, a to-
tal of 706,415 images were aggregated for answering queries
1-4. A sample social image created by averaging images from
all over US is shown in figure 9. As shown in Fig. 10, the
overall green color intensity (query 1) peaked during sum-
mer months. The area with most green pictures (query 2)
was at [35,-84], which happens to be at the intersection of 3
national forests and 1 national park. The overall variation in
zones of different greenery showed a reasonable trend, with
high greenery zone moving from south-east of US in April
towards north, covering most of US in summers and then re-

ceding southwards again. The relative intensity of red and
green showed interesting trends. For example, in New Eng-
land region (query 4), the green dominated red over summer
months, but red overtook green during the ‘Fall’ months.

The queries 5 and 6 were answered using meta-data from
79,628 images. The ‘snow’ tags data was normalized using
the number of geocoded images uploaded from that region
on any topic. The trajectory for the epicenter of the high
snow segment is shown in Fig.10(e). Lastly, the similarity
value between the aggregate snow activity and north-south
linear decay pattern was found to be 0.519 .

8.6 Discussion and future work

Our experiments first verified the correspondence between
real world events and social media (sec 8.2). Going beyond
single event detection, sections 8.3, 8.4 demonstrated the
expressiveness of the defined query algebra to pose spatio-
temporal situation queries which can be answered using so-
phisticated media processing tools under the hood. The ex-
periments clearly show the value of moving beyond single
event detection to handling trajectories, periodicity, future
state estimation, correlation across topics, spatio-temporal
visualization, and similarity estimates. Admittedly, the re-
sults for different applications are preliminary in terms of
data granularity, and processing employed. But they clearly
show the potential, and the hence the need for such a spatio-
temporal query algebra for undertaking more detailed anal-
ysis. Application results are only going to get better with
more availability of fine-grained geo-data, and more sophis-
ticated analysis techniques, both of which are becoming in-
creasingly better each day.

Experiment 4 (sec 8.5) demonstrated that the proposed
approach can work across media sources and support differ-
ent social pixel representations and applications. Together,
the experiments demonstrate a working system involving a
large corpus (>100 million tweets, and >700,000 Flickr im-
ages) to highlight the 3 design principles set forth in section
2. The use of human sensors, a social pixel approach, and
the situational query algebra are indeed demonstrated to be
useful in multiple application domains.

This work is aimed to be a foundation for multiple research
challenges and opportunities ahead. We kept the following
problems out of the scope of the current paper, but intend
to work and collaborate on them in near future.

1) Defining a (visual) query language on top of the query
algebra defined.

2) User evaluation from multiple spatio-temporal domains
and operator refinement.

3) Automatic topic modeling for thematic analysis.

4) Creating reverse-911 like control/ recommendation appli-
cations based on reasoning presented.

5) While we have focused in this work on social media and
human-sensors, the techniques extend seamlessly to all kinds
of sensors. In fact, we expect the distinction to get in-
creasingly blurred with time. Growth of multimodal, sensor
based microblogs and works like house that tweets 7 are
steps in that direction. We intend to evaluate our work on
multiple sensor platforms including automatic device tweets,
traffic lights, weather info in near future.

"http : //asmarterplanet.com/blog/2009/07/a — house —
that — tweets.html
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Figure 10: Answers for queries 1-5 for seasonal characteristics monitoring using Flickr data

9. CONCLUSIONS

In this work, we have presented a case for using human
sensors to detect real world events, and generate situation
awareness. We have described how spatio-temporal-thematic
data in various social media can be aggregated into ‘social
pixels’. An image like representation allows for sophisticated
data processing, but the implementation details cna be hid-
den from a user, who simply employs a declarative query al-
gebra to pose relevant queries. The designed operators can
be combined to define arbitrarily sophisticated situational
queries. Results of applying this approach across multiple
applications have been demonstrated using a growing cor-
pus containing millions of user posts. We intend to extend
the approach to different types (sources and modalities) of
social media, and implement a full visual query language in
near future.
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